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Abstract

The ¯ow perturbation around a circular rigid particle during simple shear deformation has been investigated for both

Newtonian and non-Newtonian (power-law) ¯uids by ®nite-element modelling. If the particle is rotating under the applied shear
couple and no-slip occurs at the particle±¯uid interface, a `bow-tie-shaped' streamline pattern results for both Newtonian and
power-law ¯uids and the shape of streamlines does not change noticeably if the stress exponent (n ) is changed. In contrast, if

the ¯uid is allowed to separate from the particle, a `double-bulge-shaped' ¯ow develops in the case of Newtonian ¯uids, and the
type of streamline pattern is in¯uenced by n. We suggest that both stair-stepping and non-stair-stepping geometries of
porphyroclast tails may be produced in mylonites, depending on the degree of coherence between the porphyroclasts and the

embedding matrix. A di�erent behaviour of the ¯uid±particle interface may occur as the result of changing ¯uid rheology, owing
to the contrasting stress ®elds developed for Newtonian and non-Newtonian ¯uids. 7 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Porphyroclasts and porphyroclast systems in mylo-
nites have been a subject of increasing attention in
recent years (Passchier and Simpson, 1986). Firstly,
fabric asymmetry around porphyroclasts is a reliable
indicator of the sense of shear and may be used in tec-
tonic reconstructions (e.g. Mawer, 1987; Pennacchioni
and Guermani, 1993). Secondly, elliptical porphyro-
clasts exceeding a critical axial ratio rotate towards
equilibrium (sink) positions in general non-coaxial
deformation �0 <Wk < 1, where Wk is the kinematic
vorticity number; Passchier, 1987). The angle between
the shear plane and the major axis of a porphyroclast
at rest is a function, for a given aspect ratio, of the
bulk vorticity (Passchier, 1987; Masuda et al., 1995)

and may be used to infer the regime of natural defor-

mation. Lastly, the geometry of porphyroclast systems

may store information on the rheological properties of

the embedding matrix and allow inference on the type

of ¯ow occurring in the lithosphere. On the basis of

experimental deformation of rock analogues in an

annular shear zone apparatus, it has been suggested

that either a non-stair-stepping or stair-stepping geo-

metry of porphyroclast wings (Fig. 1a, b) develops in

the case of either Newtonian or power-law (non-New-

tonian) creep of the matrix, respectively (Passchier and

Sokoutis, 1993; Passchier et al., 1993). The di�erent

porphyroclast geometries have been related to the con-

trasting type of matrix ¯ow developing in the two

cases, which is characterized by an eye-shaped or bow-

tie-shaped separatrix (Fig. 1c, d) (ten Brink and

Passchier, 1995; Passchier, 1993, 1994; Passchier and

Sokoutis, 1993).

The possibility of getting information on the type of
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constitutive equations using porphyroclast geometry
has important implications. The knowledge of the
actual rheology of rocks during ductile ¯ow at depth is
important for models of seismic character of the litho-
sphere and of large scale geodynamic processes, as well
as for understanding the actual mechanisms operating
in rocks at high homologous temperatures. The analy-
sis of porphyroclast geometry has important advan-
tages for determining rock rheology: data can be
collected by simple optical analysis or directly on hand
specimens, porphyroclast geometry is rather insensitive
to annealing processes, and the geometry is clearly re-
lated to the bulk ¯ow of the embedding matrix.

However, this ®rst requires that the variation of por-
phyroclast geometry can be unequivocally related to
matrix rheology, and this is not yet fully established.

Experimental data on rock analogue material
(Passchier and Sokoutis, 1993; Passchier, 1993, 1994;
ten Brink and Passchier, 1995) are not identical with
the numerical results of Masuda and Mizuno (1996a,
b). Based on ®nite-element modelling, these authors
report `double-bulge-shaped' streamline patterns (simi-
lar to a ¯ow with an eye-shaped separatrix, but where
the separatrix makes a tangent at in®nity to the shear
plane) with stress exponents (n ) ranging from 1 (New-
tonian ¯ow) to 5 (power-law ¯ow). Therefore, accord-
ing to Masuda and Mizuno (1996a), porphyroclast
system geometry cannot be used as a gauge for the
stress sensitivity of the strain rate. The numerical
analysis and experiments only agree in predicting a
similar type of ¯ow in Newtonian ¯uids and these
results are also in accordance with the available theor-
etical analyses (Cox et al., 1968; Masuda and Ando,
1988; Gray and Busa, 1994; Bjùrnerud and Zhang,
1995).

This paper is an attempt to explain, using numerical
modelling, the di�erent ¯ow patterns obtained exper-
imentally in viscous ¯uids and, therefore, of the di�er-
ent porphyroclast geometries. In a simple model for a
porphyroclast, we aim to show that, if a rigid spherical
object is set in a ¯uid undergoing simple shear, the
combined e�ect of di�erences in the coherence at the
¯uid±particle interface and the ¯uid rheology may con-
trol the transition from one type of ¯ow to another.

2. Theoretical background

Incompressible viscous ¯uid rheology is widely
accepted as a good approximation for rock behaviour
undergoing ductile deformation at relatively high hom-
ologous temperatures. The constitutive equation for
viscous ¯uids may be expressed as

tij � mdij �1�
where m is the viscosity, tij is the deviatoric stress ten-
sor and dij is the shear-rate tensor. A ¯uid is called
Newtonian if, for a given temperature, the viscosity is
a constant, otherwise non-Newtonian. For non-Newto-
nian ¯uids the viscosity is supposed to follow a power-
law equation

m � m0D
1=nÿ1 �2�

where

D �
0@1

2

X3
i,j�1

dijdij

1A1=2

Fig. 1. (a, b) Topology of d-shaped porphyroclast systems: porphyro-

clasts (black) without stair-stepping recrystallization wings (a) and

with stair-stepping geometries (b). In stair-stepping topologies the

porphyroclast wings are not in-plane, i.e. they do not lie, far away

from the porphyroclast, on the marker plane parallel to the shear

plane passing through the centre of the porphyroclast (dotted line in

b). (c, d) Types of streamline patterns described in viscous ¯ow past

a sphere during simple shear far-®eld deformation. Flows are charac-

terized by an eye-shaped separatrix (c) or by a bow-tie-shaped separ-

atrix (d). The separatrix is the dashed line that separates open from

closed streamlines; stagnation points (s.p.) and stagnation lines (dots

and dashes) are immobile `regions' of the ¯uid.
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m0 is a constant and n (also known as stress exponent)
is a phenomenological parameter, such that the ¯uid is
Newtonian if n � 1:

The dynamics of a viscous ¯uid obeys complex non-
linear partial di�erential equations that strongly
depend on the stress tensor properties (e.g. Malvern,
1969). In general, these equations can be solved only
by heavy numerical computations (e.g. Zienkiewicz
and Taylor, 1994). For the steady-state motion of a
viscous, incompressible Newtonian ¯uid at low Rey-
nolds number, the dynamical equations reduce to the
simpli®ed Navier±Stokes equations

mr2u � rp and r � u � 0 �3�

where m is the viscosity, u � �u1, u2, u3� is the velocity
vector and p is the pressure. Analytical solutions of
the above equations are available in some simple cases
(e.g. Lamb, 1932).

In most mylonites, porphyroclast shape closely
approaches a sphere or an ellipsoid and matrix ¯ow is
highly non-coaxial. The spherical and ellipsoidal por-
phyroclast shapes are the result of grain re®nement
processes during porphyroclast rotation, which tend to
eliminate sites of high stress concentration (ten Brink
and Passchier, 1995). The component of non-coaxiality
of the mylonitic ¯ow can be inferred from the asym-
metry of mylonitic textures (e.g. Passchier and Trouw,
1996). Therefore, the simplest model of a porphyro-
clast in a mylonite is a rigid sphere embedded in a vis-
cous ¯uid deformed by simple shear.

In the case of the ¯ow of a Newtonian ¯uid past a
rotating sphere during simple shear far-®eld defor-
mation, analytical solutions have been suggested by a
few authors (Cox et al., 1968; Masuda and Ando,
1988; Gray and Busa, 1994; Bjùrnerud and Zhang,
1995). However, a careful overview of the literature
establishes the di�culties involved in trying to solve
Eq. (3) analytically (for the boundary conditions under
consideration) and, to our knowledge, no exact sol-
ution is currently available.

Cox et al. (1968) calculated the velocity ®eld past a
rotating cylinder during simple shear deformation and
also provide a formula for the velocity ®eld past a
sphere. However a direct substitution shows that the
suggested formula is not an exact solution of Eq. (3).

Masuda and Ando (1988) derived an approximate
expression of the velocity components of simple shear
¯ow past a rotating sphere by summing two `elementary'
velocity ®elds: (i) the velocity u a of a general viscous
¯ow around an immobile rigid sphere, and (ii) the vel-
ocity u b induced by a rotating sphere in an immobile
(at in®nity) ¯uid. u a is written as a linear composition
of solid spherical harmonics including arbitrary terms
up to degree 2 to get an approximate solution. u b is
the exact solution of Lamb (1932, pp. 588±589).

Bjùrnerud and Zhang (1995) adopted an approach
similar to that of Masuda and Ando (1988) and calcu-
lated the velocity ®eld by summing the two exact ana-
lytical solutions of Lamb (1932) for the above cases (i)
and (ii). In the case (i), the analytical solution of
Lamb (1932, pp. 588±589) is expressed as a function of
the parameter U [which is the velocity component u1
at in®nity where the boundary conditions are
ua � �U, 0, 0�]. Bjùrnerud and Zhang (1995) have used
the Lamb's (1932) solution to obtain the simple shear
¯ow past an immobile sphere by substituting the quan-
tity U with U � U�x2� � U0x2=h, where U0 is a con-
stant and h is the half-width of the shear zone.
However, this substitution is not allowed because U is
a constant in Lamb's original solution, not a variable
that may vary with xi.

According to Gray and Busa (1994), if a generic far-
®eld spatial-gradients-of-the-velocity tensor
Lij � @ui=@xj is known, the velocity ®eld around a
sphere may be calculated with a formula that is a gen-
eralization of the one calculated, in the case of a pure
shear deformation around an immobile sphere, by Ein-
stein (1956). However the proposed formula does not
tend to apply to any generic tensor Lij (for example
the case of a far-®eld translation or rotation).

Because of these di�culties related to the analytical
solution of the problem (and, it should be noted, no
theoretical analysis is available at all for non-Newto-
nian ¯uids), a numerical approach to the problem was
employed.

3. Finite element model

We have analyzed the geometry of the ¯ow past a
rotating sphere by the Finite Element Method (FEM)
(e.g. Zienkiewicz and Taylor, 1994) for the case of a
viscous ¯uid with di�erent rheologies (from Newtonian
to strongly non-Newtonian) undergoing simple shear
far-®eld deformation. For simplicity, we have initially
performed a detailed 2D analysis (equivalent to the
analysis of a section through an in®nitely long cylin-
der), which is in agreement qualitatively with prelimi-
nary 3D results. To exclude the possibility that some
code-dependent e�ects may have occurred, we have
used two di�erent FEM codes. Moreover, the
`reliability' of the numerical results has been previously
checked by reproducing some simple cases for which
exact analytical solutions are known (e.g. Lamb,
1932).

3.1. 2D model

3.1.1. Model geometry
The geometric model for our analysis is shown in

Fig. 2(a). The model takes into account only a quarter

G. Pennacchioni et al. / Journal of Structural Geology 22 (2000) 683±692 685



of the structure, re¯ecting the symmetry of the analy-
sis. The origin of the Cartesian coordinate system x1±
x2 is placed at the centre of the particle and the par-
ticle radius (r ) is set to 1. In order to evaluate the in-
¯uence of the model size we studied di�erent cases by
changing ratio between the size (l ) of the analyzed
square area and the particle radius �r � 1). Values of l
in the range of 2.68 (as in Masuda and Mizuno's
model) to 25 have been investigated (Fig. 2a reports
the model with l � 5). We expected that, since bound-
ary conditions on line 1 and line 2 simulate a far-®eld
simple shear deformation, the model must have a mini-
mum size below which the results are conditioned by
the size of the model.

3.1.2. Mesh
The mesh for l � 5 includes 2204 quadrilateral el-

ements and 2108 nodes (Fig. 2b). Considering the fact
that ¯ow perturbation will appear around the sphere,
we re®ned the mesh close to the particle. Models with
l > 2:68, have been built by adding elements to the
same l � 2:68 mesh. In some models, the mesh type
has been varied to establish if it has any signi®cant in-
¯uence on the results. In these cases, we used either a
mesh internally generated by the program (paved
mesh: Fig. 2c) or have re-meshed with a high-resol-
ution grid.

3.1.3. Boundary conditions (Fig. 2a)
The far-®eld, steady-state, clockwise simple shear de-

formation is simulated by assigning velocity com-
ponents

u1 � _gx2 and u2 � 0 �4�
to the nodes of line 1 and line 2, where u1 is the vel-
ocity component along the x1 axis, _g is the far-®eld
simple-shear strain-rate deformation. Moreover,
because of the symmetry of the system, u1 � 0 along
the x1 axis (line 4), and u2 � 0 along the x2 axis (line
5). A critical point in the numerical modelling is the
choice of the boundary conditions on line 3, which
represents the ¯uid at the interface with the rigid par-
ticle. Therefore, this point will be discussed in detail.
Boundary conditions imposed on velocity in viscous-
¯ow theory usually require that the ¯uid adhere to any
rigid wall (Malvern, 1969). At any stationary wall, the
tangential velocity ut is set to be zero in viscous ¯ow
theory, while for an ideal frictionless ¯uid only the
normal component (un) is required to vanish at a rigid
wall. In the present case, the particle is assumed to
rotate in accordance with experience (e.g. Passchier
and Sokoutis, 1993). If no slip occurs at the particle±
matrix interface, as is assumed in viscous-¯ow theory,
a constant non-zero tangential velocity has to be
assigned to the nodes of line 3. In this hypothesis, we

Fig. 2. (a) Geometric model for the FEM analysis �l � 5� and bound-

ary conditions. (b) Four-node quadrilateral mesh mainly used in this

study. (c) Automatically generated paved mesh. (d) 3D model.
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set ut � constant and un � 0 on line 3. These boundary
conditions were also assumed by Masuda and Mizuno
(1996a) in their models. The magnitude of the tangen-
tial velocity is set to be half the simple shear rate of
the far-®eld deformation �_g� in both Newtonian and
non-Newtonian matrix ¯ow, in accordance with the
theory (Je�ery, 1922; Masuda and Mizuno, 1996a):
model with these boundary conditions is referred to as
Model A.

The above boundary conditions along line 3, are
consistent with the behaviour of an ideal viscous ¯uid.
However, experimental results (e.g. Ildefonse and
Mancktelow, 1993) and observation in mylonites indi-
cate that detachment may occur to some degree at the
¯uid±particle interface. Detachment has been modelled
by some authors by reducing the angular velocity of
the porphyroclasts (Bjùrnerud and Zhang, 1995) in ac-
cordance with experiments that indicate relatively
small rotation rates compared to theoretically expected
ones (Passchier and Sokoutis, 1993). We have investi-
gated in Model B the e�ects of reducing the rotation
velocity of porphyroclasts on ¯ow lines by assigning a
constant tangential velocity ut < _g=2 to the nodes of
line 3. However, the boundary conditions in Model B
do not actually represent detachment of the ¯uid from
the particle since, if a loss of interface coherence
occurs somewhere, the tangential velocity cannot be
set at a constant value along the whole particle sur-
face. As an end member situation, opposite to the case
where ¯uid is completely adhered to the particle wall,
we have considered the case of a completely detached
surface (Model C). In Model C only the normal com-
ponent of velocity is ®xed along line 3 �un � 0), while
the tangential velocity is unconstrained. This is prob-
ably not the case in most real situations and exper-
iments with viscous ¯uids in which detachment occurs
on `discrete' ¯uid±particle interface segments where the
resolved shear stress exceeds a critical value.

3.1.4. Input data
Newtonian to strongly non-Newtonian power-law

rheology of the ¯uid has been considered by varying
the stress exponent from 1 to 10. In fact, the dominant
deformation mechanism in many crystalline materials
has been shown to change from power-law dislocation
creep, with n normally in the range of 3±5 (Kirby,
1985), to di�usional creep or Harper±Dorn Newtonian
dislocation creep (Wang et al., 1994), for which n
approaches 1 (Newtonian viscous). In addition, super-
plasticity, thought to be a main deformation mechan-
ism in many ®ne-grained mylonites, is characterized by
power-law constitutive equation with n � 1±2:5, and
some experimental rock deformation studies have
reported stress exponents as high as 11 (Kirby and
McCormick, 1984).

We have modelled deformation under both geologi-

cal and experimental conditions. For the geological de-
formation we used strain rate values in the range of
10ÿ14±10ÿ12 sÿ1, viscosities in the range of
1019±1023 kg mÿ1 sÿ1 and a density of 2:7� 103 kg mÿ3,
which correspond to very low Reynolds numbers
�1:35� 10ÿ30±1:35� 10ÿ36). For laboratory defor-
mation we used data from the experimental runs and
materials (polydimethyl-siloxano: PDMS) of Passchier
and Sokoutis (1993): strain rate � 10ÿ3±10ÿ1 sÿ1;
viscosity � 5� 104 kg mÿ1 sÿ1; density �
9:65� 102 kg mÿ3 (for material parameters see Weijer-
mars, 1986). Reynolds numbers are in the range of
9:65� 10ÿ9±10ÿ7:

Because of the very large di�erences in the order of
magnitude of the terms involved in the equations
(compare viscosities with strain rate values), a dimen-
sionless formulation of the problem has been used, to
reduce the possible ill-conditioning of the matrices
involved in the calculations. In dimensionless formu-
lation the quantities, ui and xi, and time t are scaled
with respect to a characteristic speed S and a charac-
teristic length L. The dimensionless velocities u�i and
distances x�i are de®ned by the relations u�i � ui=S, and
x�i � xi=L: In the case of simple shear ¯ow in a New-
tonian incompressible ¯uid, the system of equations of
momentum conservation may be written as

Re
X3
j�1

u�j
@u�i
@uj
� ÿ@p

�

@xi
�
X3
j�1

@d�ij
@xj

�5�

where Re � rSL=m (Re: Reynolds number),
p� � pL=mS, d�ij � dij�L=mS �: This representation of the
momentum equation is a good choice for low Rey-
nolds numbers. However, there is not a unique rep-
resentation of the momentum equation. A simple
rearrangement of the above equation results in

X3
j�1

u�j
@u�i
@uj
� ÿ@p

��

@xi
� 1

Re

X3
j�1

@d�ij
@xj

�6�

where p�� � p=�rS2�: This second set of equations is
more appropriate for high Reynolds numbers.

3.2. 3D model

Consider the 3D geometry shown in Fig. 2(d), where
a sphere is present in a ¯uid undergoing simple shear
(the plane x1±x2 is the shear plane and x1 is the shear
direction). In contrast to the case of a cylinder, the
¯ow around a sphere will include u2 velocity
components. Therefore, the streamline pattern
obtained in 2D models cannot be uncritically assumed
to be a good model for the ¯ow around a sphere. We
have run some 3D tests with boundary conditions con-
sistent with those of 2D models as illustrated in
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Fig. 3. (a) Bow-tie-shaped perturbation of streamlines around a circular particle in clockwise simple shear ¯ow. The dashed line represents the

FEM analysis area. In the upper left-corner inset, the meaning of rmax and rmin is shown. (b) Contrasting streamline patterns obtained for New-

tonian ¯uids with di�erent nondimensionalization equations: the solid and dashed lines indicate streamlines obtained with Eq. (2a) and (2b), re-

spectively. (c) In¯uence of n on streamline patterns; the open and ®lled triangles indicate the position of rmax in the case of n � 1 and n � 5,

respectively. (d) Comparison between FEM models of geological and experimental deformations in the case of n � 10; the open and ®lled tri-

angles indicate the position of rmax in the case of the geological and experimental simulation, respectively.
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Fig. 2(d). The results are only brie¯y summarized here,
and a complete 3D is still in progress and will be pre-
sented elsewhere.

4. Results and discussion

Unless otherwise stated, we only present the results
for models with size l � 5 (Fig. 2a) calculated with a
mesh as in Fig. 2(b). The results can be summarized as
follows.

4.1. Model A: constant tangential velocity of the ¯uid at
the particle interface �ut � _g=2)

The streamline patterns are always bow-tie-shaped
(Fig. 3a), irrespective of the value of the stress expo-
nent in the range of 1 < n < 10: A bow-tie-shaped
streamline pattern is characterized by three separatrices
which end on two `hyperbolic stagnation points' (that
are immobile in the ¯ow) on both sides of the central
object. This type of streamline pattern has been
obtained in experiments by tracing the path lines of
marker particles in a ¯uid close to porphyroclasts (ten
Brink and Passchier, 1995) and is consistent with a
¯ow pattern suggested by Ottino (1989). Our numeri-
cal results are in part contradictory to the inferences
of Passchier et al. (1993), who suggested that a bow-
tie-shaped separatrix only develops in the case of
n > 1: This was the basis of their suggestion that stair-
stepping and non-stair-stepping geometries may be
used to distinguish between a non-Newtonian and
Newtonian matrix rheology. The fact that the type of
streamline pattern remains unchanged for n � 1 and
n > 1 ¯ows was the main conclusion of Masuda and
Mizuno (1996a), but they obtained a double-bulge-
shaped particle path in their FEM model. The reason
for this di�erence is di�cult to determine in the
absence of more speci®c details about their model.
However, we succeeded in reproducing the same
streamline pattern as in Masuda and Mizuno under
the same boundary conditions by changing the nondi-
mensionalization equation. If Eq. (6) is used instead of
Eq. (5), the streamline pattern changes from bow-tie to
apparently double-bulge-shaped. The two di�erent
streamline patterns obtained with the two di�erent
nondimensionalizations are drawn in Fig. 3(b). How-
ever, Eq. (6) should only be used in the case of high
Reynolds numbers when inertial e�ects are dominant
over viscous e�ects, which is not the case for defor-
mation considered.

The in¯uence of the n value on the results is negli-
gible, at least in the range n � 1±5: A streamline pat-
tern can be characterized by the distances from the
origin, measured on the x1 and x2 axis, of the most
distant closed particle path around the circular por-

phyroclast. The two values, representing the farthest
and the nearest points of the particle path, are referred
to as rmax and rmin, respectively (Cox et al., 1968;
Masuda and Mizuno, 1996a) (see inset of Fig. 3a). In
our model, changing n produces only very minor vari-
ations in the rmax and rmin values (Fig. 4) and of the
particle paths (Fig. 3c). In any case, these minor di�er-
ences are unlikely to produce contrasting porphyro-
clast morphologies useful for discriminating the
rheological properties of the matrix in mylonites.

The results of the simulations using experimental
parameters are very similar to those discussed above
for geological deformation, despite the very large
di�erence in the Reynolds number (up to 29 orders of
magnitude). In the case of Newtonian ¯ow, the calcu-
lated streamline patterns for experimental and natural
deformation are practically indistinguishable from each
other, whereas some di�erences may be discerned at
high n values (Figs. 3d and 4). However, the values
rmax and rmin for geological and experimental con-
ditions are quite similar even in the case of strongly
non-Newtonian ¯uid. This fact justi®es the use of ana-
logue scale models to simulate natural deformation.

The results of the FEM analysis are strongly con-
ditioned by the size l of the model. This is well illus-
trated by the change of rmax and rmin with changing l
(Fig. 5). The value of rmax signi®cantly increases with
increasing l. In addition, rmax is largely unin¯uenced
by the n value in the range of l between 5 and 12, but
shows a strong dependence on n, as well as on l, for
l > 15 and l < 5: The value of rmin is relatively unin-
¯uenced by l and n for models with l < 12; for l > 12,

Fig. 4. Dependence of rmax and rmin on n, in an l � 5 model with

no-slip conditions at the particle±¯uid interface (Model A).
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rmin remains nearly constant with changing l in New-
tonian ¯uids, but shows a strong dependence on l in
non-Newtonian ¯uids. A similar mismatching between
rmax values at di�erent n also results in the case of
l � 2:68: However, we consider this model inadequate
since the boundary conditions at line 1 and line 2
hardly simulate in this case a far-®eld deformation
because of the small size of the model.

Because of the way the di�erent meshes were built,
namely by adding elements to the same l � 2:68 mesh,
comparing models with di�erent l also means compar-
ing results calculated with di�erent meshes. Some
dependence of r on l may therefore be simply related
to these mesh di�erences. Moreover, this way of build-
ing the mesh results in strongly elongate elements
toward line 1 and line 2 at large l, which may intro-
duce numerical problems and at least in part explain
the dependence of r on l. To test the possible in¯uence
of varying the mesh on results, we also performed
some models with a paved mesh, automatically gener-
ated by the program and an additional high-resolution
mesh. The test results demonstrate that the in¯uence
of the mesh is negligible.

4.2. Model B: `reduced' tangential velocity of the ¯uid
at the particle interface �ut < _g=2)

The streamline pattern still develops the same bow-tie
shape for both Newtonian and non-Newtonian ¯uids as
in the previous Model A examples. Decreasing the tan-
gential velocity from half the bulk shear strain rate at
the particle±¯uid interface causes the outermost closed

particle path to shrink around the porphyroclast. This is
in accordance with the results of Bjùrnerud and Zhang
(1995). The e�ect of decreasing ut on rmax and rmin

values is shown in the plot of Fig. 6.

4.3. Model C: unconstrained tangential velocity of the
¯uid at the particle interface

In contrast to the results for Model A and B, when
slip is allowed at the particle±¯uid interface the
streamline pattern is strongly dependent on the ¯uid
rheology and, in particular, contrasted ¯ow geometries
are obtained for Newtonian and non-Newtonian ¯uids.
In the case of Newtonian ¯uids, the ¯ow is character-
ized by a double-bulge-shaped separatrix topology
(Fig. 7a), which is consistent in this case with the ex-
perimental results of Passchier and Sokoutis (1993).
Non-Newtonian ¯uids are instead characterized by the
¯ow type reported in Fig. 7(b), which is quite di�erent
from the previously described ¯ow categories (Fig. 1c,
d). With respect to both eye and bow-tie-shaped
streamline patterns, this ¯ow does not include closed
particle paths around the sphere and the separatrix
e�ectively abuts against the porphyroclast. This type
of pattern already appears at n � 2:

As in Model A, a strong dependence of streamlines
on the model dimension (l ) is found. For any given n,
the streamline patterns calculated for di�erent l are of
the same type, but are not coincident. As in the pre-
vious models, there is a negligible in¯uence of the
mesh and input parameters (i.e. `geological' or `exper-
imental') on the results.

Fig. 6. Dependence of rmax and rmin on the values of the tangential

velocity ut imposed at the particle±boundary interface (Model B).

Fig. 5. Dependence of rmax and rmin on the model size (l ) in Model

A.
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4.4. 3D models

3D analysis implies severe numerical computation
and a high hardware performance is required for a
detailed study. We anticipate here only preliminary
results, but we stress that a more re®ned analysis is
necessary to allow a more de®nitive interpretation. On
the plane x1±x3 of the 3D model (i.e. the plane
through the centre of the sphere, normal to the shear
plane and containing the shear direction) the following
qualitative observation can be made:

(a) In Model A, independent of the value of n in
the range 1 < n < 5, the particle paths include para-
bolic trajectories around the x1 axis at a certain dis-
tance from the rigid sphere consistent with 2D ¯ow
types characterized by a bow-tie-shaped separatrix.
This legitimizes the use of 2D models to obtain in-
formation on the type of streamline pattern around
a sphere.
(b) The streamline patterns calculated in the 3D
analysis are characterized by a noticeable shrinking
of closed particle paths with respect to those calcu-
lated in 2D models. This e�ect was already reported
by Cox et al. (1968) as a main di�erence between
the ¯ow patterns around a cylinder and a sphere.
This indicates that the amount of stair-stepping cal-
culated in 2D models overestimates the one occur-
ring around a sphere and this may have some
in¯uence in interpretation of porphyroclast system
geometry as a rheological gauge.

5. Conclusions

FEM investigation of the distortion of simple shear
viscous ¯ow around a rigid sphere has produced several
important results that can be used in the interpretation
of porphyroclast systems in mylonites and analogue
scale-model experiments. We were able to reproduce
both the streamline patterns observed experimentally
(Passchier and Sokoutis, 1993; Passchier, 1993, 1994;
ten Brink and Passchier, 1995), but the change in the
¯ow pattern from types characterized by an eye-shaped
separatrix to ones with a bow-tie-shaped one does not
occur simply as the result of changing the ¯uid rheology,
as suggested by these authors, but was only possible by
changing the boundary conditions.

An important result of our FEM models is that the
di�erence in the ¯ow patterns found in experiments is
probably related to a di�erence in the degree of coher-
ence of the ¯uid±particle interface. Although particle±
matrix decoupling is not generally considered in vis-
cous ¯uid theory, it commonly occurs in natural cases,
as demonstrated by observations in natural mylonites
(where pressure shadows around porphyroclasts are
common) and by experiments with rock analogues
(Ildefonse and Mancktelow, 1993). In our FEM
models, a no-slip condition between ¯uid and porphyr-
oclast always produces only one type of ¯ow indepen-
dent on the ¯uid rheology, whether Newtonian or
power-law (with 1 < n < 10). The ¯uid ¯ow is charac-
terized by a bow-tie-shaped separatrix. As a conse-
quence, d-shaped porphyroclast systems in mylonites
will show stair-stepping geometries of recrystallized
wings if the matrix is coherent with the embedded por-
phyroclasts. In the case of a coherent particle±¯uid
interface the in¯uence of the ¯uid rheology on stream-
line-patterns is negligible and, therefore, no di�erences
in morphology of stair-stepping porphyroclast systems
that could be used to infer the matrix rheology (and in
particular n values) in mylonites are expected to occur.

In Newtonian ¯uids, the development of streamline
patterns with a double-bulge shape is possible when
detachment occurs at the ¯uid±particle interface.
Therefore, non-stair-stepping recrystallization wings
are e�ectively related to linear viscous rheology of the
matrix in mylonites (as suggested on the basis of ex-
perimental work), but only if decoupling of the matrix
occurs around porphyroclasts. When detachment
occurs, the streamline-pattern type is conditioned by
the rheology of the ¯uid and, in non-Newtonian ¯uid,
the ¯ow calculated numerically could be consistent
with s-type porphyroclast geometries.

Our study is limited to the numerical analysis of two
end-member cases, i.e. perfect coherence or complete
detachment of the ¯uid±particle interface, under di�er-
ent ¯uid rheologies. In both experiments and mylo-
nites, this will not be the case. When detachment

Fig. 7. Streamline patterns obtained in Newtonian (a) and non-New-

tonian ¯uids (b) when complete detachment occurs at the particle±

¯uid interface (Model C).
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occurs, it probably a�ects only discrete portions of the
particle surface where the shear stress exceeds a critical
frictional value. Therefore, the real distribution of
detachment re¯ects the heterogeneous stress distri-
bution around a porphyroclast as well as the `rough-
ness' characteristic of the particle surface. A more
detailed study of detachment is needed. However, our
analysis indicates that caution must be used when
attempting to use porphyroclast geometry in mylonites
to infer the rheology of the matrix, since the streamline
patterns are a complex function of the rheology of the
¯uid and of the degree of coherence between ¯uid and
particle. This is in accordance with the observations of
Bjùrnerud and Zang (1995).

If analyzed in the light of the present results, the ex-
perimental data of Passchier and Sokoutis (1993) and
ten Brink and Passchier (1995) may indicate that
detachment is not equally likely to occur in Newtonian
and non-Newtonian ¯uids. This is a reasonable conse-
quence of the change in the stress ®elds associated
with changing n, and therefore the same boundary
conditions may not be appropriate for di�erent ¯uid
rheologies. It would be important to verify this hy-
pothesis experimentally by monitoring in detail the
relative velocity of the ¯uid close to the particle inter-
face. Combined experimental and numerical studies
together with detailed observations on natural mylo-
nites are necessary to better understand the behaviour
of porphyroclast systems, since they still have a great
potential for placing constraints on the rheology of
rocks in the domain of ductile deformation.

Acknowledgements

We greatly acknowledge N. Mancktelow, G. Ranalli
and an anonymous reviewer for review. This work was
supported by grants from M.U.R.S.T (G.V. Dal Piaz
and M. Morandi-Cecchi).

References

Bjùrnerud, M.G., Zhang, H., 1995. Flow mixing, object±matrix

coherence, mantle growth and the development of porphyroclasts

tails. Journal of Structural Geology 17, 1347±1350.

Cox, R.G., Zia, Y.Z., Mason, S.G., 1968. Particle motion in sheared

suspensions. XXV. Streamline around cylinders and spheres.

Journal of Colloid and Interface Science 27, 7±18.

Einstein, A., 1956. Investigation on the Theory of the Brownian

Movement. Dover, New York.

Gray, N.H., Busa, M.D., 1994. The three-dimensional geometry of

simulated porphyroblast inclusion trails: inert-marker, viscous

¯ow model. Journal of Metamorphic Geology 12, 575±597.

Kirby, S.H., 1985. Rock mechanics observations pertinent to the

rheology of the continental lithosphere and the localisation of

strain along shear zones. Tectonophysics 119, 1±27.

Kirby, S.H., McCormick, J., 1984. Inelastic properties of rocks and

minerals: strength and rheology. In: Carmichael, R.S. (Ed.),

Handbook of Physical Properties of Rocks, vol. iii. CRC Press,

Boca Raton, FL, pp. 140±280.

Ildefonse, B., Mancktelow, N., 1993. Deformation around rigid par-

ticles: the in¯uence of slip at the particle matrix interface.

Tectonophysics 221, 345±359.

Je�ery, G.B., 1922. The motion of ellipsoidal particles immersed in a

viscous ¯uid. Proceedings of the Royal Society of London, Series

A 102, 161±179.

Lamb, H., 1932. Hydrodynamics. Cambridge University Press,

Cambridge.

Malvern, L.E., 1969. Introduction to the Mechanics of a Continuum

Medium. Prentice-Hall, Englewood Cli�s, NJ 713 pp.

Masuda, T., Ando, S., 1988. Viscous ¯ow around a rigid spherical

body: a hydrodynamical approach. Tectonophysics 148, 337±346.

Masuda, T., Michibayashi, K., Otha, H., 1995. Shape preferred

orientation of rigid particles in a viscous matrix: re-evaluation to

determine kinematic parameters of ductile deformation. Journal

of Structural Geology 17, 115±129.

Masuda, T., Mizuno, N., 1996a. De¯ection of non-Newtonian simple

shear ¯ow around a rigid cylindrical body by the Finite Element

Method. Journal of Structural Geology 18, 1089±1100.

Masuda, T., Mizuno, N., 1996b. Computer modelling of mantled

porphyroclasts in Newtonian and non-Newtonian simple shear

viscous ¯ow. Journal of Structural Geology 18, 1487±1491.

Mawer, C.K., 1987. Shear criteria in the Grenville Province,

Ontario, Canada. Journal of Structural Geology 9, 531±539.

Ottino, J.M., 1989. The Kinematics of Mixing Stretching, Chaos and

Transport. Cambridge University Press, Cambridge.

Passchier, C.W., 1987. Stable positions of rigid objects in non-coaxial

¯owÐa study in vorticity analysis. Journal of Structural Geology

9, 679±690.

Passchier, C.W., 1993. Experimental modelling of mantled porphyro-

clasts. Journal of Structural Geology 15, 895±909.

Passchier, C.W., 1994. Mixing in ¯ow perturbations: a model for

development of mantled porphyroclasts in mylonites. Journal of

Structural Geology 16, 733±736.

Passchier, C.W., Simpson, C., 1986. Porphyroclasts systems as kin-

ematic indicators. Journal of Structural Geology 8, 831±843.

Passchier, C.W., Sokoutis, D., 1993. Experimental modelling of

mantled porphyroclasts. Journal of Structural Geology 15, 895±

909.

Passchier, C.W., ten Brink, C.E., Bons, P.D., Sokoutis, D., 1993. d
objects as a gauge for stress sensitivity of strain rate in mylonites.

Earth and Planetary Science Letters 120, 239±245.

Passchier, C.W., Trouw, R.A.J., 1996. Microtectonics. Springer-

Verlag, Berlin.

Pennacchioni, G., Guermani, A., 1993. The mylonites of the

Austroalpine Dent Blanche nappe along the northwestern side of

the Valpelline valley (Italian Western Alps). Memorie di Scienze

Geologiche 45, 37±55.

ten Brink, C.E., Passchier, C.W., 1995. Modelling of mantled por-

phyroclasts using non-Newtonian rock analogue materials.

Journal of Structural Geology 17, 131±146.

Wang, J.N., Hobbs, B.E., Ord, A., Shimamoto, T., Toriumi, M.,

1994. Newtonian dislocation creep in quartzites: implications for

the rheology of the lower crust. Science N.Y. 265, 1204±1206.

Weijermars, R., 1986. Flow behaviour and physical chemistry of

bouncing putties and related polymers in view of tectonic labora-

tory applications. Tectonophysics 124, 325±358.

Zienkiewicz, O.C., Taylor, R.L., 1994. The Finite Element Method.

Volume 1: Basic Formulation and Linear Problems. McGraw-

Hill, London.

G. Pennacchioni et al. / Journal of Structural Geology 22 (2000) 683±692692


